camh

Krembil Centre for Neuroinformatics

UNIVERSITY OF TORONTO

Whole Brain Modelling

Modelling large-scale brain network dynamics underlying the TMS-EEG evoked response

DAVIDE MOMI

Post-Doctoral Research Fellow Whole Brain Modelling Group Krembil Centre for Neuroinformatics Centre for Addiction & Mental Health(CAMH) <u>https://davi1990.github.io/</u> 250 College St., Toronto, ON M5T 1R8

4th International Brain Stimulation Conference 2021 Charleston, South Carolina, USA 9th December 2021

TMS-evoked activity propagates across networks

Scientific Questions

#1: Are the TEPs due to a local/single node echo of the stimulation or a global/network reverberation?

#2: What's the role of the nodes and their connections in shaping the propagation of the TMSinduced signal?

#3: Can the model parameters allow to cluster the subjects based on their TEPs?

Previous computational models of TMS-EEG

Jansen-Rit model (1995)

Schematic Overview

Robust recovery of individual subjects' empirical TEPs propagation patterns in channels space

Robust recovery of individual subjects' empirical TEPs propagation patterns in source space

Dissecting the propagation of the TMS-induced signal

#1: Are the TEPs due to a local/single node echo of the stimulation or a global/network reverberation?

Dissecting the propagation of the TMS-induced signal

TEP at 80ms is a network reverberation response

TEP at 100ms is a local echo of the stimulus

Networks propagation is affected by earlier lesions

Target vs Random Attack

#2: What's the role of the nodes and their connections in shaping the propagation of the TMSinduced signal?

Target vs Random Attack

Target Attacks affect TMS-induced activity in a timedependent manner

Random Attacks do not affect TMS-induced activity

Target vs Random Attack differences

Model parameters allow identification of subjects' TEPs clusters

#3: Can the model parameters allow to cluster the subjects based on their TEPs?

SVD simulated (TOP) and empirical (BOTTOM)

Conclusions

- We have demonstrated fast and robust recovery of individual subjects' empirical TEPs propagation patterns in model-generated activity time series both at channels and source level

UNIVERSITY OF TORONTO

Dr. Zheng Wang Data Analyst

Taha Morshedzadeh M.Sc. Student

Acknowledgements

Shreyas Harita PhD Student

Frank Mazza

M.Sc. Student

Dr. John Griffiths Team Leader

Sorenza Bastiaens PhD Student

Kevin Kadak M.Sc. Student

Whole Brain Modelling

Hussain Ather PhD Student

Parsa Oveisi

M.Sc. Student

Andrew Clappison M.Sc. Student

Krembil Centre for Neuroinformatics

